ON THE TOPOLOGY OF SUMS IN POWERS OF AN ALGEBRAIC NUMBER

NIKITA SIDOROV AND BORIS SOLOMYAK

Abstract. Let $1<q<2$ and $\Lambda(q)=\left\{\sum_{k=0}^{n} a_{k} q^{k} \mid a_{k} \in\{-1,0,1\}, n \geq 1\right\}$.
It is well known that if q is not a root of a polynomial with coefficients $0, \pm 1$, then $\Lambda(q)$ is dense in \mathbb{R}. We give several sufficient conditions for the denseness of $\Lambda(q)$ when q is a root of such a polynomial. In particular, we prove that if q is not a Perron number or it has a conjugate α such that $q|\alpha|<1$, then $\Lambda(q)$ is dense in \mathbb{R}.

1. Introduction and auxiliary results

Let $q \in(1,2)$ and put

$$
\Lambda_{n}(q)=\left\{\sum_{k=0}^{n} a_{k} q^{k} \mid a_{k} \in\{-1,0,1\}\right\},
$$

and $\Lambda(q)=\bigcup_{n \geq 1} \Lambda_{n}(q)$. (It is obvious that the sets $\Lambda_{n}(q)$ are nested.) The question we want to address is the topological structure of $\Lambda(q)$. Is it dense? discrete? mixed?

The first important result has been obtained by A. Garsia [12]: if q is a Pisot number (an algebraic integer greater than 1 whose conjugates are less than 1 in modulus), then $\Lambda(q)$ is uniformly discrete. On the other hand, if q does not satisfy an algebraic equation with coefficients $0, \pm 1$, then it is a simple consequence of the pigeonhole principle that 0 is a limit point of $\Lambda(q)$ and thus, it is dense - see below.

Surprisingly little is known about the case when q is a root of a polynomial with coefficients $0, \pm 1$. The most notable result is [11, Theorem I] in which the authors prove in particular that if $q<\frac{1+\sqrt{5}}{2}$ and q is not Pisot, then $\Lambda(q)$ has a finite accumulation point.

[^0]In this paper we study this case and give two sufficient conditions for $\Lambda(q)$ to be dense. These conditions are rather general and cover a substantial subset of such q 's - see Theorems 2.1 and 2.4.

Put

$$
Y_{n}(q)=\left\{\sum_{k=0}^{n} a_{k} q^{k} \mid a_{k} \in\{0,1\}\right\}
$$

and $Y(q)=\bigcup_{n \geq 1} Y_{n}(q)$. The set $Y(q)$ is discrete and we can write its elements in the ascending order:

$$
Y(q)=\left\{0=y_{0}(q)<y_{1}(q)<y_{2}(q)<\ldots\right\}
$$

Following [11], we define

$$
l(q)=\underline{\varliminf}_{n \rightarrow \infty}\left(y_{n+1}(q)-y_{n}(q)\right) .
$$

Theorem 1.1. ([8]) If 0 is a limit point of $\Lambda(q)$, then $\Lambda(q)$ is dense in \mathbb{R}.
It is obvious that 0 is a limit point of $\Lambda(q)$ if and only if $l(q)=0$. Hence follows

Corollary 1.2. The set $\Lambda(q)$ is dense in \mathbb{R} if and only if $l(q)=0$.
The purpose of this paper is to find some wide classes of algebraic q for which $l(q)=0$.

Put for any $\beta \in \mathbb{C}$,

$$
Y_{n}(\beta)=\left\{\sum_{k=0}^{n} a_{k} \beta^{k} \mid a_{k} \in\{0,1\}, 0 \leq k \leq n\right\}
$$

and $z_{n}(\beta):=\# Y_{n}(\beta)$. It is obvious that $z_{n}(\beta) \leq 2^{n+1}$.
In order to estimate $z_{n}(\beta)$ for $|\beta|>1$, it is useful to consider the set

$$
A_{\lambda}:=\left\{\sum_{k=0}^{\infty} a_{k} \lambda^{k} \mid a_{k} \in\{0,1\}, k \geq 0\right\}, \text { where } \lambda=\beta^{-1} .
$$

We have $|\lambda|<1$, so the series converges for any choice of the coefficients $a_{k} \in\{0,1\}$. It is easy to see that the set A_{λ} is compact, being the image of the infinite product space $\{0,1\}^{\infty}$ under a continuous mapping. It satisfies the set equation

$$
A_{\lambda}=\lambda A_{\lambda} \cup\left(1+\lambda A_{\lambda}\right)
$$

and can be characterized as the unique compact set with this property [14]. It is thus the attractor of the iterated function system $\{z \mapsto \lambda z, z \mapsto \lambda z+1\}$ in the complex plane, see [14] for details.

The sets A_{λ}, with $|\lambda|<1$, have been extensively studied in the "fractal" literature; see e.g. [2, 4, 15, 21] and the book [3, 8.2]. Note that some of these sources are concerned with the sets

$$
\widetilde{A}_{\lambda}:=\left\{\sum_{k=0}^{\infty} a_{k} \lambda^{k} \mid a_{k} \in\{-1,1\}, k \geq 0\right\}
$$

however, it is clear that $A_{\lambda}=T\left(\widetilde{A}_{\lambda}\right)$, where $T(z)=\frac{1}{2}\left(z+(1-\lambda)^{-1}\right)$, so all the results immediately transfer.

Lemma 1.3. (i) If $\lambda \in \mathbb{C}$, with $|\lambda| \in\left(\frac{1}{2}, 1\right)$, then $z_{n}(\lambda)=\# Y_{n}(\lambda) \geq$ $|\lambda|^{-n-1}$ for all n.
(ii) If $\lambda \in \mathbb{C}$, with $2^{-1 / 2} \leq|\lambda|<1$, and $|\operatorname{Re} \lambda| \leq|\lambda|^{2}-\frac{1}{2}$, then $z_{n}(\lambda) \geq$ $|\lambda|^{-2(n+1)}$ for all n.

Proof. By the definition of the set A_{λ}, we have for all $n \geq 0$:

$$
\begin{equation*}
A_{\lambda}=\bigcup_{z \in Y_{n}(\lambda)}\left(z+\lambda^{n+1} A_{\lambda}\right) \tag{1.1}
\end{equation*}
$$

(i) Suppose that the set A_{λ} is connected, and let $u, v \in A_{\lambda}$ be such that $|u-v|=\operatorname{diam}\left(A_{\lambda}\right)$. Then there exists a "chain" of distinct subsets $A_{j}:=$ $z_{j}+\lambda^{n} A_{\lambda} \subset A_{\lambda}, j=1, \ldots, m$, with $z_{j} \in Y_{n}(\lambda)$, such that $u \in A_{1}, v \in A_{m}$ and $A_{j} \cap A_{j+1} \neq \emptyset$ for all $j \leq m-1$. Therefore,

$$
\begin{aligned}
\operatorname{diam}\left(A_{\lambda}\right) & \leq \sum_{j=1}^{m} \operatorname{diam}\left(A_{j}\right)=m \cdot \operatorname{diam}\left(\lambda^{n+1} A_{\lambda}\right) \\
& \leq \# Y_{n}(\lambda)|\lambda|^{n+1} \operatorname{diam}\left(A_{\lambda}\right)
\end{aligned}
$$

and the claim follows. If, on the other hand, A_{λ} is disconnected, then $\lambda A_{\lambda} \cap$ $\left(\lambda A_{\lambda}+1\right)=\emptyset$. This is a general principle for attractors of iterated function systems with two contracting maps, see [13, 4] or [3, Chapter 8.2]. Therefore, in this case λ is not a zero of a power series with coefficients $\{-1,0,1\}$, much less a polynomial, hence $z_{n}(\lambda)=2^{n+1}>|\lambda|^{-n-1}$ for all n.
(ii) By [21, Prop. 2.6 (i)], in view of the above remark concerning \widetilde{A}_{λ}, we know that A_{λ} has nonempty interior for all λ in the open unit disc, such that $0 \leq|\operatorname{Re} \lambda| \leq|\lambda|^{2}-0.5$. Then we have from (1.1) for the Lebesgue measure \mathcal{L}^{2} :

$$
\mathcal{L}^{2}\left(A_{\lambda}\right) \leq \# Y_{n}(\lambda) \mathcal{L}^{2}\left(\lambda^{n+1} A_{\lambda}\right)=z_{n}(\lambda) \cdot|\lambda|^{2(n+1)} \mathcal{L}^{2}\left(A_{\lambda}\right)
$$

as desired.
Note that the proof of Lemma 1.3 did not use the fact that λ is non-real. Hence we obtain the following result as a direct corollary:

Lemma 1.4. If $q \in(1,2)$, then $z_{n}(\pm q) \geq C q^{n}$ for some $C>0$.
Remarks 1.5. (i) Lemma 1.4 for $+q$ was proved in [11], using the fact that $y_{n+1}(q)-y_{n}(q) \leq 1$ for all n and any $q \in(1,2)$.
(ii) With a bit more work one can show that in the setting of Lemma 1.3 (i) we have $z_{n}(\lambda) \geq C_{n}|\lambda|^{-n}$ for some $C_{n} \uparrow \infty$, assuming that λ is nonreal. However, it is not needed in this paper.
(iii) It follows from the results of [7, 17] that for any $\varphi \neq 0, \pi$, the set A_{λ} has nonempty interior for $\lambda=r e^{i \varphi}$, with r sufficiently close to 1 , but it seems difficult to apply them in the absence of quantitative estimates.

Lemma 1.6. If $\beta \in \mathbb{C} \backslash\{0\}$, then $z_{n}(\beta)=z_{n}(1 / \beta)$.
Proof. Define $\phi: Y_{n}(\beta) \rightarrow Y_{n}(1 / \beta)$ as follows:

$$
\phi\left(\sum_{k=0}^{n} a_{k} \beta^{k}\right)=\sum_{k=0}^{n} a_{n-k}(1 / \beta)^{k} .
$$

A relation $\sum_{k=0}^{n} a_{k} \beta^{k}=\sum_{k=0}^{n} b_{k} \beta^{k}$ is equivalent to $\sum_{k=0}^{n} a_{k} \beta^{k-n}=\sum_{k=0}^{n} b_{k} \beta^{k-n}$, which is in turn equivalent to $\phi\left(\sum_{k=0}^{n} a_{k} \beta^{k}\right)=\phi\left(\sum_{k=0}^{n} b_{k} \beta^{k}\right)$. Thus, ϕ is a bijection.

Lemma 1.7. Let $q \in(1,2)$; if $z_{n}(q) \gg q^{n}$ (i.e., $\overline{\lim }_{n \rightarrow \infty} q^{-n} z_{n}(q)=+\infty$), then $l(q)=0$.

Proof. Since $\sum_{k=0}^{n} a_{k} q^{k}<q^{n+1} /(q-1)$, the result follows immediately from the pigeonhole principle.

Consequently, if q is not a root of a polynomial with coefficients $0, \pm 1$, then $z_{n}(q)=2^{n+1}$, and $l(q)=0$ (which is well known, of course - see, e.g., [8]). If q is such a root, it is obvious that $z_{n}(q) \ll 2^{n}$, and the problem becomes non-trivial. It is generally believed that $l(q)=0$ unless q is Pisot, but this is probably a very tough conjecture.

2. Main Results

We need some preliminaries. Put

$$
L(q)=\varlimsup_{n \rightarrow \infty}\left(y_{n+1}(q)-y_{n}(q)\right)
$$

Note that $L(q)=0$ is equivalent to $y_{n+1}(q)-y_{n}(q) \rightarrow 0$ as $n \rightarrow \infty$. This condition was studied in the seminal paper [11]; in particular, it was shown that if $q<2^{1 / 4} \approx 1.18921$ and q is not equal to the square root of the
second Pisot number ≈ 1.17485, then $L(q)=$ d . It was also shown in the same paper that $L(\sqrt{2})=0$.

It is worth noting that the two conditions $l(q)=0$ and $L(q)=0$ are, generally speaking, very different in nature; for instance, as we know, $l(q)=$ 0 for all transcendental q, whereas $L(q)=1$ for all $q \geq \frac{1+\sqrt{5}}{2}$ (see, e.g., [10]) and no $q \in\left(\sqrt{2}, \frac{1+\sqrt{5}}{2}\right)$ is known for which $L(q)=0$.

Throughout this section we assume that $q \in(1,2)$ is a root of a polynomial with coefficients $0, \pm 1$. It is easy to show that in this case any conjugate of q is less than 2 in modulus.

Finally, recall that an algebraic integer $q>1$ is called a Perron number if each of its conjugates is less than q in modulus.

Theorem 2.1. If $q \in(1,2)$ is not a Perron number, then $l(q)=0$. If, in addition, $q<\sqrt{2}$ and $-q$ is not a conjugate of q, then $L(q)=0$.

Proof. We first prove $l(q)=0$. We have three cases.
Case 1. q has a real conjugate p and $q<|p|$. Since p is an algebraic conjugate of q, it follows from the Galois theory that the map $\psi: Y_{n}(q) \rightarrow$ $Y_{n}(p)$ given by $\psi\left(\sum_{i=0}^{n} a_{i} q^{i}\right)=\sum_{i=0}^{n} a_{i} p^{i}$, is a bijection. Hence $z_{n}(q)=$ $z_{n}(p) \geq C|p|^{n}$ by Lemma 1.4 and $z_{n}(q) \gg q^{n}$. Now the claim follows from Lemma 1.7.

Case 2. q has a complex non-real conjugate p and $q<|p|$. This case is similar to Case 1: $z_{n}(q)=z_{n}(p) \geq C|p|^{n}$ by Lemma 1.3 (i) and $z_{n}(q) \gg q^{n}$.
Case 3. q has a conjugate p and $q=|p|$. Let f denote the minimal polynomial for q. Then we have $f(x)=g\left(x^{m}\right)$ for some $m \geq 2$ by [6]. Put $\beta=q^{m}$. We have

$$
\begin{aligned}
Y_{m k}(q)= & \left\{\left.a_{0}+a_{1} \beta^{\frac{1}{m}}+a_{2} \beta^{\frac{2}{m}}+\cdots+a_{m k} \beta^{n} \right\rvert\, a_{i} \in\{0,1\}\right\} \\
= & \left\{A_{1}+\beta^{\frac{1}{m}} A_{2}+\beta^{\frac{2}{m}} A_{3}+\cdots+\beta^{\frac{m-1}{m}} A_{m}\right. \\
& \left.A_{1} \in Y_{k}(\beta), A_{i} \in Y_{k-1}(\beta), 2 \leq i \leq m\right\}
\end{aligned}
$$

Observe that any relation of the form

$$
A_{1}+\beta^{\frac{1}{m}} A_{2}+\cdots+\beta^{\frac{m-1}{m}} A_{m}=A_{1}^{\prime}+\beta^{\frac{1}{m}} A_{2}^{\prime}+\cdots+\beta^{\frac{m-1}{m}} A_{m}^{\prime}
$$

implies $A_{1}=A_{1}^{\prime}, \ldots, A_{m}=A_{m}^{\prime}$. Indeed, if q satisfies an equation $B_{1}+$ $q B_{2}+\ldots+q^{m-1} B_{m}=0$ with $B_{i} \in \mathbb{Z}\left[q^{m}\right]$, then $q e^{2 \pi i j / m}$ satisfies the same equation for $j=1, \ldots, m-1$, hence $B_{i}=0$ for all i. Thus, $z_{m k}\left(\beta^{\frac{1}{m}}\right)=$ $z_{k}(\beta) \cdot\left(z_{k-1}(\beta)\right)^{m-1}$.

[^1]Now, if $q \geq 2^{\frac{1}{m}}$, then $\beta \geq 2$, so $z_{k}(\beta)=2^{k+1}$, and we obtain from the above argument that for $n=m k$ we have $z_{n}(q) \geq C 2^{n} \gg q^{n}$. Otherwise $z_{n}(q) \geq z_{n}(\beta) \geq C \beta^{n} \gg q^{n}$. Hence by Lemma 1.7, $l(q)=0$.

Let us now prove the second part of the theorem. Suppose $q<\sqrt{2}$ is not Perron and $-q$ is not its conjugate; then q has a conjugate $\alpha \neq-q$, with $|\alpha| \geq q$. Thus, q^{2} has a conjugate α^{2}, and $|\alpha|^{2} \geq q^{2}$ with $\alpha^{2} \neq q^{2}$. If $|\alpha|>$ $\sqrt{2}$, then α^{2} (and, consequently, q^{2}) is not a root of $-1,0,1$ polynomial. Otherwise, we can apply the first part of this theorem to q^{2}. In either case, $l\left(q^{2}\right)=0$, whence by [10, Theorem 5], $L(q)=0$.

Remark 2.2. Stankov [22] has proved a similar result for the following set:

$$
\begin{equation*}
\mathcal{A}(q)=\left\{\sum_{k=0}^{n} a_{k} q^{k} \mid a_{k} \in\{-1,1\}, n \geq 1\right\} \tag{2.1}
\end{equation*}
$$

More precisely, he has shown that if $\mathcal{A}(q)$ is discrete, then all real conjugates of q are of modulus strictly less than q.

Corollary 2.3. If $q \in(1,2)$ is the square root of a Pisot number and not itself Pisot, then $l(q)=0$.

Proof. If $q=\sqrt{\beta}$ and β is Pisot, then either $-q$ is a conjugate of q or q is Pisot.

Theorem 2.4. (i) Suppose $q \in(1,2)$ has a conjugate α such that $|\alpha| q<1$. Then $l(q)=0$ and, consequently, $\Lambda(q)$ is dense in \mathbb{R}.
(ii) Suppose $q \in(1,2)$ has a non-real conjugate α such that $|\alpha| q=1$. Then $l(q)=0$.
If, in addition, $q<\sqrt{2}$ in either case, then $L(q)=0$.
Proof. (i) As above, we have $z_{n}(q)=z_{n}(\alpha)$. On the other hand, by Lemma 1.6, $z_{n}(\alpha)=z_{n}(1 / \alpha)$, and by Lemmas 1.4 and 1.3, $z_{n}(1 / \alpha) \geq C \cdot(|1 / \alpha|)^{n}$. Hence $z_{n}(q) \geq C \cdot(|1 / \alpha|)^{n} \gg q^{n}$, in view of $|\alpha q|<1$. Hence by Lemma 1.7, $l(q)=0$.

If $q<\sqrt{2}$, then q^{2} has a conjugate α^{2}, and $q^{2}|\alpha|^{2}<1$. Hence $l\left(q^{2}\right)=0$, whence $L(q)=0$.
(ii) Denote $\alpha_{1}=q, \alpha_{2}=\alpha$, and $\alpha_{3}=\bar{\alpha}$. Since $|\alpha| q=1$ and α is nonreal, we have three conjugates satisfying $\alpha_{1}^{2} \alpha_{2} \alpha_{3}=1$. Smyth [20, Lemma 1] characterizes such situations, but it is easier for us to proceed directly. The Galois group of the minimal polynomial for q is transitive, so there is an automorphism of the Galois group mapping α_{1} to α_{2}. We obtain that $\alpha_{2}^{2} \alpha_{i} \alpha_{j}=1$ for some distinct conjugates α_{i} and α_{j} of α_{1}. But this implies $\max \left\{\left|\alpha_{i}\right|,\left|\alpha_{j}\right|\right\} \geq \alpha_{1}=q$, hence q is not a Perron number, and $l(q)=0$ by Theorem 2.1.

If $q<\sqrt{2}$, then $q^{2}\left|\alpha^{2}\right|=1$, and the first part of (ii) applies to q^{2}, unless $\alpha^{2} \in \mathbb{R}$. If this is the case, then $\alpha= \pm i / q$, whence the minimal polynomial for q contains only powers divisible by 4 . Hence the minimal polynomial for q^{2} contains only even powers, which implies that $-q^{2}$ is conjugate to q^{2}, whence q^{2} is not Perron, and $l\left(q^{2}\right)=0$.

Remark 2.5. If $|\alpha| q=1$ and α is real, we do not know if $l(q)=0$. In fact, this includes the interesting (and probably, difficult) case of Salem numbers $\mathbb{2}^{2}$.

Definition 2.6. We say that an algebraic integer $q>1$ is anti-Pisot if it has only one conjugate less than 1 in modulus and at least one conjugate greater than 1 in modulus other than q itself.

Corollary 2.7. If $q \in(1,2)$ is anti-Pisot and also a root of a polynomial with the coefficients in $\{-1,0,1\}$, then $l(q)=0$.

Proof. Let $\alpha=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k-1}, q$ be all the conjugates of q. We have $\left|\prod_{j=1}^{k-1} \alpha_{j}\right| \cdot q=1$, because q satisfies an algebraic equation with coefficients $0, \pm 1$, whence its minimal polynomial must have a constant term ± 1.

Suppose $|\alpha|<1$; then it is clear than $\alpha \in \mathbb{R}$ (since it is unique). If $\left|\alpha_{2}\right|>1$ and $\left|\alpha_{j}\right| \geq 1$ for $j=3, \ldots, k-1$, then it is obvious that $|\alpha| q \leq\left|\alpha_{2}\right|^{-1}<1$, i.e., the condition of Theorem 2.4 (i) is satisfied.

3. Examples

Example 3.1. Let $q \approx 1.22074$ be the positive root of $x^{4}=x+1$. Then q has a single conjugate $\alpha \approx-0.72449$ inside the open unit disc and no conjugates of modulus 1 , whence q is anti-Pisot, and by Corollary 2.7, $l(q)=$ 0 . Furthermore, $q<\sqrt{2}$, whence $L(q)=0$ as well.

Note that $q>2^{1 / 4}$, so we cannot derive the latter claim immediately from [11, Theorem IV].

Example 3.2. An example of q with a real conjugate α which is not antiPisot but still satisfies the condition of Theorem [2.4 (i), is the appropriate root of $x^{5}=x^{4}+x^{2}+x-1$. Here $q \approx 1.52626$ and $\alpha \approx 0.59509$.

Example 3.3. For the equation $x^{5}=x^{4}-x^{2}+x+1$ we have $q \approx 1.26278$ and $|\alpha| \approx 0.74090$ so $|\alpha| q \approx 0.93559$ (and $\alpha \notin \mathbb{R}$). By Theorem 2.4 (i), $L(q)=0$.

[^2]Example 3.4. For the equation $x^{8}=x^{7}+x^{6}+x^{5}-x^{4}-x^{3}-x^{2}+x-1$ we have $q \approx 1.52501$. Among its conjugates is $\alpha \approx 0.3741+0.52404 i$ with $|\alpha| \approx 0.64387<1 / q=0.65574$, so again $l(q)=0$ by Theorem 2.4 (i). Note that $q>\sqrt{2}$ so we cannot claim $L(q)=0$.

Example 3.5. The following example illustrates Theorem 2.4 (ii). Let $q \approx$ 1.19863 be the largest root of $x^{12}=x^{9}+x^{6}+x^{3}-1$; then $\alpha=\zeta q^{-1}$ is a root of this equation as well, where ζ is any complex non-real cubic root of unity. Hence $q|\alpha|=1$, and Theorem 2.4 (ii) applies, i.e., $L(q)=0$. Note that $q=\sqrt[3]{\beta}$, where β is a quartic Salem number.

Example 3.6. For the equation $x^{11}=x^{10}+x^{9}-x^{6}+x^{4}-x^{2}-1$ we have $q \approx 1.5006$. Among its conjugates is $\lambda \approx 0.02625+0.7414 i$. Theorem [2.4] does not apply, but we can use Lemma 1.3 (ii) to obtain

$$
z_{n}(q)=z_{n}(\lambda) \geq|\lambda|^{-2(n+1)} \approx 1.81696^{n+1} \gg q^{n}
$$

which implies that $l(q)=0$. Note that Lemma 1.3 (ii) applies, because $0.02625 \approx \operatorname{Re} \lambda<|\lambda|^{2}-\frac{1}{2} \approx 0.05037$.

Example 3.7. Consider the equation $x^{18}=-x^{16}+x^{14}+x^{11}+x^{10}+\cdots+x+1$ (no powers missing between x^{10} and 1). It has a root $q \approx 1.22289$, and the largest in modulus conjugates are u, \bar{u} approximately equal to $-.03958 \pm$ 1.3109i. Then Theorem 2.1 implies $L(q)=0$.

It is worth mentioning that there is another way to obtain this result. Consider q^{2} and its conjugates u^{2}, \bar{u}^{2}. We claim that although $\left|u^{2}\right|<2, u^{2}$, and hence q^{2}, is not a zero of a $-1,0,1$ polynomial (whence $l\left(q^{2}\right)=0$, which implies $L(q)=0$).

Indeed, if it were, then $q^{-2}, u^{-2},(\bar{u})^{-2}$ would also be zeros of such a polynomial. However, the product of these three numbers is ≈ 0.226024, so this is impossible, in view of the following

Claim. Suppose z_{1}, z_{2}, z_{3} are three different roots of $a-1,0,1$ polynomial. Then $\left|z_{1} z_{2} z_{3}\right| \geq 1 / 2 \cdot(4 / 3)^{-3 / 2}=0.32476 \ldots$

This claim is a slight generalization of [5, Theorem 2], see [19, Theorem 2.4].

Example 3.8. Finally, an example of q for which none of our criteria works is the real root of $x^{5}=x^{4}+x^{3}-x+1$. Here $q \approx 1.54991$, and the other four conjugates are non-real, with the moduli ≈ 1.04492 and ≈ 0.76871 respectively.

Another example is any Salem number $q \in(1,2)$, for instance $q \approx$ 1.72208 which is a root of $x^{4}=x^{3}+x^{2}+x-1$. (Which is of course none other than β from Example 3.5.)

4. Final remarks and open problems

4.1. Our first remark concerns the case $q \in(m, m+1)$ with $m \geq 2$. Here the natural definition for $\Lambda(q)$ is

$$
\Lambda(q)=\left\{\sum_{k=0}^{n} a_{k} q^{k} \mid a_{k} \in\{-m,-m+1, \ldots, m-1, m\}, n \geq 1\right\}
$$

Theorem 2.4 holds for this case, provided $\alpha \in \mathbb{R}$ (and so does Case 1 of Theorem (2.1) - the proof is essentially the same. The case of non-real α is less straightforward, since there is no ready-to-apply complex machinery for $m \geq 2$. (Basically, we need that if α is a zero of a polynomial with coefficients in $\{-m, \ldots, m\}$, then the attractor of the iterated function system $\{\alpha z+$ $j\}_{j=0}^{m}$ in the complex plane is connected. This can be verified for $m=2,3$ but we do not know if this is true in general.) Note also that an analogue of Theorem 1.1 for $m \geq 2$ has been proved in [9].
4.2. We do not know whether the extra condition that $-q$ is not a conjugate of q is really necessary in the second claim of Theorem 2.1. In particular, is it true that $L(\sqrt{\varphi})=0$ if φ is the golden ratio?
4.3. In [18, Proposition 1.2] it is shown that if $q<\sqrt{2}$ and q^{2} is not a root of a polynomial with coefficients $0, \pm 1$, then the set $\mathcal{A}(q)$ given by (2.1) is dense in \mathbb{R}. In fact, what the authors use in their proof is the condition $l\left(q^{2}\right)=0$. Consequently, Theorems 2.1 and 2.4 provide sufficient conditions for $\mathcal{A}(q)$ to be dense in case when q^{2} does satisfy an algebraic equation with coefficients $0, \pm 1$.
4.4. Is $l(q)=0$ for q in Example 3.8 and suchlike?
4.5. All our criteria yield that $l(q)=0$ implies $L(q)=0$ for $q<\sqrt{2}$. Is this really the case?
Acknowledgement. The authors are indebted to the Max-Planck Institute where a significant part of the work was done in the summer of 2009. We are also grateful to Martijn de Vries for indicating the papers [8, 9]. The research of Solomyak was supported in part by NSF grant DMS-0654408.

Added in proof. In the recent paper by Sh. Akiyama and V. Komornik [1] several results mentioned in the introductory part of the present paper have been significantly improved, namely:
(i) If $q \in(1, \sqrt{2}]$ is non-Pisot, then $\ell(q)=0$ and $\mathcal{A}(q)$ is dense in \mathbb{R};
(ii) If $q \in(\sqrt{2}, 2)$ is non-Pisot, then $\Lambda(q)$ has a finite accumulation point;
(iii) For $q \in\left(1,2^{1 / 3}\right]$ we have $L(q)=0$.

References

[1] Sh. Akiyama and V. Komornik, Discrete spectra and Pisot numbers, http://arxiv.org/abs/1103.4508.
[2] C. Bandt, On the Mandelbrot set for pairs of linear maps, Nonlinearity 15 (2002), 1127-1147.
[3] M. F. Barnsley, Fractals Everywhere, Academic Press, 1988.
[4] M. F. Barnsley and A. N. Harrington, A Mandelbrot set for pairs of linear maps, Physica D 15 (1985), 421-432.
[5] F. Beaucoup, P. Borwein, D. Boyd and C. Pinner, Multiple roots of $[-1,1]$ power series, J. London Math. Soc. (2) 57 (1998), 135-147.
[6] D. Boyd, Irreducible polynomials with many roots of maximal modulus, Acta Arith. 68 (1994), 85-88.
[7] Z. Daróczy and I. Kátai, Generalized number systems in the complex plane, Acta Math. Hung. 51 (1988), 409-416.
[8] V. Drobot, On sums of powers of a number, Amer. Math. Monthly 80 (1973), 42-44.
[9] V. Drobot and S. McDonald, Approximation properties of polynomials with bounded integer coefficients, Pacific J. Math. 86 (1980), 447-450.
[10] P. Erdős, I. Joó and V. Komornik, On the sequence of numbers of the form $\varepsilon_{0}+$ $\varepsilon_{1} q+\cdots+\varepsilon_{n} q^{n}, \varepsilon_{i} \in\{0,1\}$, Acta Arith. 83 (1998), 201-210.
[11] P. Erdős and V. Komornik, Developments in non-integer bases, Acta Math. Hung. 79 (1998), 57-83.
[12] A. Garsia, Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc. 102 (1962), 409-432.
[13] M. Hata, On the structure of self-similar sets, Japan J. Appl. Math. 2 (1985), 381414.
[14] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713-747.
[15] K.-H. Indlekofer, A. Járai, and I. Kátai, On some properties of attractors generated by iterated function systems, Acta Sci. Math. (Szeged) 60 (1995), 411-427.
[16] V. Komornik, personal communication.
[17] V. Komornik and P. Loreti, Expansions in complex bases, Canad. Math. Bull. 50 (2007), 399-408.
[18] Y. Peres and B. Solomyak, Approximation by polynomials with coefficients ± 1, J. Number Theory 84 (2000), 185-198.
[19] P. Shmerkin, Overlapping self-affine sets, Indiana Univ. Math. J. 55 (2006), 12911332.
[20] C. J. Smyth, Conjugate algebraic numbers on conics, Acta Arith. 40 (1982), 333-346.
[21] B. Solomyak and H. Xu, On the 'Mandelbrot set' for a pair of linear maps and complex Bernoulli convolutions, Nonlinearity 16 (2003), 1733-1749.
[22] D. Stankov, On spectra of neither Pisot nor Salem algebraic integers, Monatsh. Math. 159 (2010), 115-131.

School of Mathematics, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom. E-mail: sidorov@manchester.ac.uk

Box 354350, Department of Mathematics, University of Washington, Seattle, WA 98195, USA. E-mail: solomyak@math.washington.edu

[^0]: Date: July 19, 2011.
 2000 Mathematics Subject Classification. Primary 11J17; Secondary 11K16, 11R06.
 Key words and phrases. Algebraic number, Perron number, Salem number, power sum.

[^1]: ${ }^{1} \mathrm{~V}$. Komornik has recently shown [16] that the second condition can be removed, so $L(q)=0$ if $q<2^{1 / 4}$.

[^2]: ${ }^{2}$ Recall that an algebraic number $q>1$ is called a Salem number if all its conjugates have absolute value no greater than 1 , and at least one has absolute value exactly 1 .

